Neralt / Music Theory Workshop Japan

Neralt (ネラルト)

伝説的なリズムマシーンTR909およびシンセDX7が誕生した地であるSHIZUOKA CITYに生まれる。10代よりビッグバンドにてピアニストとして活動、上京後もジャズクラブなどでセッションに興じる。00年代後半よりクラブシーンに接近し、西麻布の伝説のクラブYellowにてライブテクノバンドNEXTの一員としてメインステージを飾る。また自身のサロンイベント”Salon de nude”を企画。クラブシーンとミュージシャンのクロスオーバーを図る。2013年にはアイドルいずこねこのワンマンライブのバックバンドでキーボーディストに務める。(DVD: 2nd one-man LIVE 「猫と煙と赤いカーテン」in 東京キネマ倶楽部<限定盤>収録)また、プレイヤーとしての活動の傍ら、1990年代より20年に渡り音楽理論/演奏理論について研究している。2014年 4月 初の著書”RHYTHM AND FINGER DRUMMING”を刊行。BCCKS、TOKYO FUTURE MUSICの音楽理論書籍部門で販売実績1位。2014年11月に「古典的な音楽理論を現代の音楽家に提供する」をコンセプトに音楽理論書籍”Traditional Music Theory For Contemporary Musicians”を刊行予定。


Twitter: @musictheorynera

Site: Neralt.com





1      英WIKI



Music notation systems have used letters of the alphabet for centuries.



The 6th century philosopher Boethius is known to have used the first fourteen letters of the classical Latin alphabet,



A-B-C-D-E-F-G-H-I-K-L-M-N-O (the letter J didn’t exist until the 16th century)



to signify the notes of the two-octave range that was in use at the time,[6] and which in modern scientific pitch notation is represented as





Though it is not known whether this was his devising or common usage at the time,



this is nonetheless called Boethian notation.



Although Boethius is the first author which is known to have used this nomenclature in the literature,



the above-mentioned two-octave range was already known five centuries before by Ptolemy,



who called it the “perfect system” or “complete system”,



as opposed to other systems of notes of smaller range, which did not contain all the possible species of octave (i.e., the seven octaves starting from A, B, C, D, E, F, and G).

これは他のより狭い範囲のシステム(訳者注:おそらくオクターブに届かない7音のグループのシステムを指している) と異なっていました。

Following this, the range (or compass) of used notes was extended to three octaves, and the system of repeating letters A-G in each octave was introduced, these being written as lower case for the second octave (a-g) and double lowercase letters for the third (aa-gg).



When the range was extended down by one note, to a G, that note was denoted using the Greek G (Γ), gamma.



(It is from this that the French word for scale, gamme is derived, and the English wordgamut, from “Gamma-Ut”, the lowest note in Medieval music notation.)



The remaining five notes of the chromatic scale (the black keys on a piano keyboard) were added gradually; the first being B♭, since B was flattened in certain modes to avoid the dissonant tritone interval.



This change was not always shown in notation, but when written, B♭ (B-flat) was written as a Latin, round “b”, and B♮ (B-natural) a Gothic or “hard-edged” b.

この変化は常に記述されたわけではありませんでしたが、もし現れた場合にはBbは丸いb、そしてB♮はゴシック体(筆者注:ドイツ字体?) 固いbと書かれました。


These evolved into the modern flat (♭) and natural (♮) symbols respectively.

これらはそれぞれ発展し、現在のflat (♭) と natural (♮) となりました。


The sharp symbol arose from a barred b, called the “cancelled b”.



In parts of Europe, including Germany, the Czech RepublicSlovakiaPolandHungaryNorwayDenmarkSerbiaCroatiaFinlandIceland and Sweden, the Gothic b transformed into the letter H (possibly for hart, German for hard, or just because the Gothic b resembled an H).



Therefore, in German music notation, H is used in lieu of B♮ (B-natural), and B in lieu of B♭ (B-flat).

そういうわけで、ドイツの記譜法ではHがB♮ の代わりに、そしてBがBbの代わりに使用されています。


Occasionally, music written in German for international use will use H for B-natural and Bb for B-flat (with a modern-script lowercase b instead of a flat sign).



Since a Bes or B♭ in Northern Europe (i.e. a B elsewhere) is both rare and unorthodox (more likely to be expressed as Heses), it is generally clear what this notation means.


In Italian, Portuguese, Spanish, French, Romanian, Greek, Russian, Mongolian, Flemish, Persian, Arabic, Hebrew, Bulgarian and Turkish notation the notes of scales are given in terms of Do-Re-Mi-Fa-Sol-La-Si rather than C-D-E-F-G-A-B. These names follow the original names reputedly given by Guido d’Arezzo, who had taken them from the first syllables of the first six musical phrases of a Gregorian Chant melody Ut queant laxis, which began on the appropriate scale degrees. These became the basis of the solfege system. “Do” later replaced the original “Ut” for ease of singing (most likely from the beginning of Dominus, Lord), though “Ut” is still used in some places. “Si” or “Ti” was added as the seventh degree (from Sancte Johannes, St. John, to whom the hymn is dedicated). The use of ‘Si’ versus ‘Ti’ varies regionally.

The two notation systems most commonly used nowadays are the Helmholtz pitch notation system and the Scientific pitch notation system. As shown in the table above, they both include several octaves, each starting from C rather than A. The reason is that the most commonly used scale in Western music is themajor scale, and the sequence C-D-E-F-G-A-B (the C-major scale) is the simplest example of a major scale. Indeed, it is the only major scale which can be obtained using natural notes (the white keys on the piano keyboard), and typically the first musical scale taught in music schools.

In a newly developed system, primarily in use in the United States, notes of scales become independent to the music notation. In this system the natural symbols C-D-E-F-G-A-B refer to the absolute notes, while the names Do-Re-Mi-Fa-So-La-Ti are relativized and show only the relationship between pitches, where Do is the name of the base pitch of the scale, Re is the name of the second pitch, etc. The idea of so-called movable-do, originally suggested by John Curwen in the 19th century, was fully developed and involved into a whole educational system by Zoltán Kodály in the middle of the 20th century, which system is known as the Kodály Method or Kodály Concept.



2      音楽史《上》/K.H.ウェルナー









3      引用文献

K.H.ウェルナー. 音楽史【上】 (第 第3版 版). 全音楽譜出版社.

慶應義塾図書館デジタルギャラリー. (日付不明). 慶應義塾図書館デジタルギャラリー. 参照先: http://project.lib.keio.ac.jp/dg_kul/index.html





(ボエティウス著作の画像あり/ [慶應義塾図書館デジタルギャラリー])

中世の大学では学問を「クアドリビウム(4科)」と、文法・論理・修辞から成る「トリビウム(3科)」の自由七科に分類した。「クアドリビウム」すなわち、数学(数そのもの)、幾何学(空間の数)、音楽(時間の数)、天文学(空間と時間の数)は、数を万物の根本原理としたギリシャの哲学者ピタゴラスによる数学の分類に基づく。本書は、ローマの哲学者アニキウス・マンリウス・トルキアトゥス・セベリヌス・ボエティウス(c. 480-524)が著した「クアドリビウム」を初めて印刷したものである。



[i] (K.H.ウェルナー)pp.39を確認せよ。

この投稿は役に立ちましたか? 役に立った 役に立たなかった 0 人中 0 人がこの 投稿 は役に立ったと言っています。



メールアドレスが公開されることはありません。 * が付いている欄は必須項目です

以下の数式は「スパム対策」です。空欄に正しい数字をいれてください。お手数をおかけします。 * Time limit is exhausted. Please reload the CAPTCHA.